MA2510 Probability and Statistics

Probability. Sample Space. Discrete and Continuous Random Variables. Discrete and Continuous Probability Distributions. Central Limit Theorem. Chebyshev’s Theorem. Mathematical Expectation and Variances. Moment Generating Functions.Estimation of Parameters. Hypothesis Testing for one and two samples.
MA2510 - EF3250
Also : MIT Intro to Prob and stats 18.05 ( No video )

Stanford Probability Theory: STAT310/MATH230 No video

Advanced Stochastic Processes: No video

Prob Stats for Eng and Sci
https://www.youtube.com/watch?v=rmGDNf3TKQE&list=PLuLrbLfHQopo7plRJZ8gkKZ6sdhOv3Q4B&index=1

Textbook: Prob Stats for Eng and Sci (key order)
with answer demo in youtube (70 hrs 25 mins)
MIT: 6.041 Probabilistic Systems Analysis (25 hrs) + (Max 50 hr) avg 1 hr for 25courses
Each Sesh: 1+1.5=2.5 hrs
Stanford # 统计学导论|Introduction to Statistics (6 hrs) + (Max 12 hrs) for avg 5 mins for 72 courses(10-81)
Each sesh 5+10 mins = 15mins
Harvard (1 hr) + (3 hrs)
avg 8 mins for 7 courses
Each sesh: 8+ 25 mins= 33mins
Markov in Harvard not covered in this plan
Lecture Notes
2 Probability: 2.1 Sample Space; 2.2 Events; 2.3 Counting; 2.4 Probability of an Event; 2.5 Additive Rules; 2.6 Conditional Probability; 2.7 Multiplicative Rules; 2.8 Bayes’ Rule; Exercises; Review ( 2.5 hr * 4 +15 min * 5 _+33min*2 = 12 hrs 21 mins) W0 1 Probability Models and Axioms; 2 Conditioning and Bayes’ Rule; 3 Independence; 4 Counting 16 概率的解释; 17 互补事件、等可能结果的加法和乘法; 18 四则法则:至少一个; 19 完全列举; 20 贝叶斯法则; 21 贝叶斯分析 Probability: Counting; Random variables, distributions, quantiles, mean variance; Conditional probability, Bayes’ theorem, base rate fallacy; Joint distributions, covariance, correlation, independence; Central limit theorem
3 Random Variables and Probability Distributions: 3.1 Concept of an RV; 3.2 Discrete; 3.3 Continuous; 3.4 Joint; Exercises; Review; 3.5 Misconceptions
( 2.5 hr * 7 = 17.5 hrs + 11 * 15mins = 2.75 hrs + 33mins * 2 = 1 hr == 21.25 hrs )
W1
5 Discrete RVs; PMFs; Expectations; 6 Discrete RV examples; Joint PMFs; 7 Multiple discrete RVs: expectations, conditioning, independence; 8 Continuous RVs; 9 Multiple continuous RVs; 10 Continuous Bayes’ Rule; Derived Distributions; 11 Derived distributions; Convolution; Covariance and Correlation 29 二项分布与二项系数; 30 二项式公式; 31 随机变量与概率直方图; 24 正态曲线; 25 经验法则; 26 标准化与标准正态; 27 正态近似; 28 用正态近似算百分位; 32 无放回二项抽样的正态近似; 44 相关系数; 45 线性关联 Probability bullets: Random variables and distributions; Joint distributions, covariance, correlation, independence
4 Mathematical Expectation: 4.1 Mean; 4.2 Variance and Covariance; 4.3 Linear Combinations; 4.4 Chebyshev’s Theorem; Exercises; Review; 4.5 Misconceptions
( 2.5 hr , 15mins * 3 = 45 mins + 33mins * 1 = 4 hr 49 mins)
W0
5 Expectations (discrete); 7 Expectations (multiple RVs); 11 Convolution; Covariance and Correlation; 12 Iterated Expectations 35 期望值和标准误差; 36 总和百分比的期望与标准误差及模拟计算; 37 平方根定律 Probability/Statistics bullets: expectation, variance underpin CI/testing/regression
5 Some Discrete Probability Distributions: 5.1 Intro; 5.2 Discrete Uniform; 5.3 Binomial/Multinomial; 5.4 Hypergeometric; 5.5 Negative Binomial/Geometric; 5.6 Poisson & Poisson Process; Exercises; Review; 5.7 Misconceptions
( 2.5 * 6 = 15 hrs OR 7.5 hrs + 15mins* 4 = 1 hr OR 0 hr +1 hr = 17 hrs OR 8.5 hrs ) W1
5 Discrete RVs; 6 Joint PMFs; 7 Multiple discrete RVs; 13 Bernoulli Process; 14–15 Poisson Process I–II 29 二项分布与二项系数; 30 二项式公式; 31 随机变量与概率直方图; 32 无放回二项抽样的正态近似 Probability bullet covers discrete named families implicitly (Bernoulli, binomial, Poisson)
6 Some Continuous Probability Distributions: 6.1 Uniform; 6.2 Normal; 6.3 Areas under Normal; 6.4 Applications; 6.5 Normal approx to Binomial; 6.6 Gamma/Exponential; 6.7 Applications; 6.8 Chi-square; 6.9 Lognormal; 6.10 Weibull (Opt); Exercises; Review; 6.11 Misconceptions
10 hrs OR 0 hour+ ( 4 * 15 mins = 1 hr OR 2 * 15 mins = 30 mins ) + 0 hrs = 11 hrs OR 30 mins W2
8 Continuous RVs; 9 Multiple continuous RVs; 10 Continuous Bayes’ Rule; 11 Derived distributions; Convolution 24 正态曲线; 25 经验法则; 26 标准化与标准正态; 27 正态近似; 28 用正态近似算百分位; 49 给定 x 的正态近似 Probability bullets list uniform, normal, exponential under “work with continuous RVs”
7 Functions of Random Variables (Optional): 7.1 Introduction; 7.2 Transformations; 7.3 Moments and MGFs; Exercises
(15*2 = 30 mins ) W2
10 Derived distributions; 11 Convolution; Covariance/Correlation; 12 Iterated Expectations 50 残差图、异方差性和变换(在回归中出现的变换);49 条件正态近似(派生分布思想) Not explicit as a bullet; implicit within Probability and regression topics
8 Fundamental Sampling Distributions and Data Descriptions: 8.1 Random Sampling; 8.2 Important statistics; 8.3 Data displays; 8.4 Sampling distributions; 8.5 Sampling dist of means; 8.6 Sampling dist of S; 8.7 t; 8.8 F; Exercises; Review; 8.9 Misconceptions
*( 2.5 hrs 2 = 5hrs + 10 * 15 mins = 2.5 hrs == 7.5 hrs ) W3
19 Weak Law of Large Numbers; 20 Central Limit Theorem 11 简单随机抽样与分层抽样; 12 偏差与偶然误差; 38 抽样分布; 39 三个直方图; 40 大数定律; 41 中心极限定理; 42 CLT 适用条件; 8 百分位/五数概括/标准差; 3 饼图条形图直方图; 4 箱线图/散点图 Probability bullet includes CLT; Statistics II moves to inference; graphical methods implicit
9 One- and Two-Sample Estimation Problems: 9.1 Intro; 9.2 Statistical inference; 9.3 Classical estimation; 9.4 Single-sample mean; 9.5 SE of estimator; 9.6 Prediction intervals; 9.7 Tolerance limits; 9.8 Two means; 9.9 Paired; 9.10 Single proportion; 9.11 Two proportions; 9.12 Single variance; 9.13 Ratio of variances; 9.14 MLE (Opt); Exercises; Review; 9.15 Misconceptions
(4*2.5 + 6 * 15min+1 = 12.5 hrs ) W5
21–22 Bayesian Statistical Inference I–II; 23–25 Classical Statistical Inference I–III 34 参数和统计量; 35 标准误差; 53 置信区间的解释; 54 用 CLT 计算置信区间; 55 自助法估计标准误差; 56 更多关于置信区间; 69 参数自助法与自助法置信区间 Statistics I: Bayesian inference with known priors, probability intervals, conjugate priors; Statistics II: Bayesian with unknown priors; Frequentist CIs; Resampling: bootstrapping
10 One- and Two-Sample Tests of Hypotheses:
10.1 Concepts;
10.2 Testing;
10.3 One-/Two-tailed; 10.4 p-values; 10.5 Single-mean (σ known); 10.6 CI relationship; 10.7 Single-mean (σ unknown); 10.8 Two means; 10.9 Sample size; 10.10 Graphical compare; 10.11 One proportion; 10.12 Two proportions; 10.13 Variances; 10.14 Goodness-of-fit; 10.15 Independence (categorical); 10.16 Homogeneity; 10.17 Several proportions; 10.18 Two-sample case study; Exercises; Review; 10.19 Misconceptions W8
( 0 + 12* 15 mins = 3 hrs)
23–25 Classical inference series include hypothesis testing content 57 假设检验思想; 58 检验统计量; 59 P 值; 61 t 检验; 63 双样本 z 检验; 64 配对样本; 73 卡方检验(均质性/独立性); 74 比较多个均值; 75–77 方差分析与 F 分布; 80 Bonferroni、FDR、数据拆分 Statistics II: Frequentist significance tests and confidence intervals; multiple testing/resampling within Statistics II

Probability foundations

Discrete random variables and distributions

Continuous random variables and key continuous families

Joint distributions, covariance, correlation, independence

Mathematical expectation and moment tools

Transformations, MGFs, functions of RVs

Sampling distributions and limit theorems

Estimation: point, intervals, standard errors

Hypothesis testing

Regression and correlation

Resampling and multiple testing

Graphical methods and EDA

Experimental design and sampling basics

Stochastic processes (optional/enrichment)

Unified syllabus sequencing note

Derivations

Applied Derivation - In Probabilistic, Statistics and Finance

Main reference

  1. Probability and Statistics for engineers and scientists
  2. MIT
    Pasted image 20250827104800.png

Open Courses

https://www.reddit.com/r/statistics/comments/1gk3iqf/e_best_video_series_on_probability_and_statistics/

StatQuest by Josh Starmer

MIT 6.041 -> Also see18.650

Stanford
(free) https://www.bilibili.com/video/BV185411k7mr/
(paid original) https://www.coursera.org/learn/stanford-statistics?action=enroll
Stanford Introduction to Statistics Summaries

Harvard STAT110x (Story telling)

Problems

Problem log - MA2510

How Probability and Statistics lay foundations for Stochastic Calculus

MA2510 - EF3250

Some Course-oriented materials

MA2510_high_score_resources_zh

Important intro

数学专业 (本科,研究生)       一般人们对概率论这门学科的理解可以划分为三个层次:
1古典型,未受过任何相关训练的人都属于此类,只能够理解一些离散的(古典的)概率模型;
2近代型,通常指学过概率论基础的,从微积分的角度理解各种连续分布,概率模型的数字特征;
3现代型,抽象地从测度论和实分析高度理解,建立在测度基础上的概率论通常所谓的高等概率论。
           选一本适合自己的好的教材对自己以后的学习是决定性的重要--这是学数学的人首先必须明白的--不仅是对概率方向,对数学的各个分支都是如此。大一的时候齐名友老师跟我特别提到过这一点,可惜我当时不以为然,结果走了很多弯路,到研究生以后才慢慢明白这个道理。 一本山寨小学校的老师七拼八凑编写的烂书,常常对学习(特别是自学)不仅无益反而有害,因为你往往浪费了时间却只能得到这个一些支离破碎的印象,这样你会遗忘得很快,很可能到头来你还得重新学一遍 ;另一些时候,你选择了众人推荐的名著,但你如果当前的水平达不到一定的层次,它往往会打击你的信心让你灰心丧气,甚至会让你不再有学下去的欲望。这两种情形显然都是人们应该尽量避免的。
       需要指出的是,有的书适合作教材,有的书却只适合作参考书;就算都是教材,它定位的读者群体也可能不一样。每个人都应该根据自己的实际情况做出选择。一般好书大多都是国外的,所以如果有可能最好去看国外的原版书,就算没有这个能力也应该去锻炼这个能力。
       读原版书其实没看起来的那么难,你不需要懂得任何高深的语法,记熟100个单词/词组就能轻易上手,
       记熟300个你就能在大多数情况下不需要字典了。我记得我法语学了不到一年就来到法国读书,老师上课基本听不懂,只能自己找书看,而图书馆里绝大多数参考书都是法语的(当时不知道在网上找书)。按说我当时法语应该比大多数中国大学生英语要远差,但我抱着一本法语的拓扑书回家一边查字典一边看,两三天就完全适应了。真正看外文原版书,要克服的首要困难永远都是数学本身,而不是生词或者语法。
 
 我推荐的学习方法是这样的:读一本简单而直观的入门书,
 这样能比较容易地把握一个领域的主干,
 明白它要达到哪些目的,
 通过什么样的方法,
 关键性的定理有哪些;
 等掌握大体框架之后再找一本详尽而严密的教材慢慢推敲其细节。
 中文的书我没什么好推荐的--在国内的时候看的书质量都不高(当时抱着一本书就看,对好书和烂书也没有概念)而出国之后就没再看过中文书了。我依稀记得汪嘉冈的《现代概率基础》还不错,其它的我就不知道了。对于外文书,我倒是有很多可以推荐。这样我首先要推荐的是David Williams写的Probability with martingales。书写得很薄,严格意义上说它不是一本教材,但完全可以把它当做现代概率论和鞅理论的入门书来看。我觉得很少有书能够写得象它那样把严密性,直观性以及趣味性完美的融合到一起,并且自成体系(即所谓self-contained,就是说你不需要一边看这本书一边在别的书里寻找相关定理,定义或者其它背景知识)。它只引入对主题有帮助的概念,因此这样读者就可以不必顾及细枝末节从而能够快速领悟其精髓。等你入门之后,可以看的进阶级书就很多了,比如Chung Kai Lai的A course in probability theory。